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GENERALIZATIONS OF LAGRANGE'S EXPANSION COMBINED WITH LIGHTHILL'S
TECHNIQUE FOR UNIFORMIZING SOLUTIONS OF
PARTIAL DIFFERENTIAL EQUATIONS
E. Dale Martin

Ames Research Center

SUMMARY

Use of Lighthill's technique to uniformize approximate solutions of
partial differential equations is simplified by incorporating it into a
perturbation-expansion scheme based on a higher dimensional generalization of
Lagrange's expansion. Lighthill's technique is made easier to apply by use of
explicit formulas for the uniformized solution in terms of the previously
determined nonuniform solution. Results of this study also indicate that
Lighthill's technique can be more useful than realized previously. As one
example, uniformly valid thin-airfoil solutions can be obtained, by the direct
procedure, to any higher order of approximation.

INTRODUCTION

Since Lighthill introduced his technique for uniformizing approximate
solutions of physical problems (ref. 1), the method has been widely used,
especially in fluid and gas dynamics, for both subsonic and supersonic flow
problems. (See refs. 2-4 for discussion and references.) The basic princi-
ples of the method have also been incorporated into extensions and other
related approaches (refs. 3, 5, 6, 7).

It has been widely believed for a number of years that the use of
Lighthill's technique should be restricted to ordinary and hyperbolic differ-
ential equations. No way has been found to apply Lighthill's technique in
many problems governed by parabolic equations where the nonuniformity is due
to an essential singularity, which can only be eliminated by ''stretching" or
magnifying the coordinate (cf. ref. 8). Difficulty in applying Lighthill's
technique to solutions of elliptic equations has also caused the belief that
its use was not generally valid there. Although Lighthill's technique had
been used early to cope with the nonuniformity at the leading edge in thin-
airfoil theory governed by an elliptic equation (ref. 9), it was subsequently
presumed that Lighthill's treatment of thin airfoils was a special case, and
that the method could not yield an improved uniform solution beyond the second
order. Tsien (ref. 3) (among others) stated (incorrectly, as we shall see)
that "a solution uniformly valid to all orders is not possible." This was
cited as a "failure of the PLK method." Very recently, however, Hoogstraten
(ref. 10) was able to use Lighthill's technique in conjunction with a special
conformal-mapping technique to find uniformly valid thin-airfoil solutions for




round-nosed and sharp-nosed airfoils. Essentially the same method has been
used independently by Bollheimer and Weissinger (ref. 11). These significant
results obtained by Hoogstraten and by Bollheimer and Weissinger apply only to
thin-airfoil theory governed by the Laplace equation. However, it will be
shown that uniform higher order thin-airfoil solutions can be obtained by a
direct application of Lighthill's technique in this elliptic problem. In the
case considered, the solution is obtained quite easily in a variety of ways,
and is possible to all orders. The procedure is not limited to Laplace's
equation and so should be applicable to many other elliptic problems. It is
applied in essentially the same manner to hyperbolic problems. (Conditions
for applicability of Lighthill's technique are not investigated here. The
procedures zZiven are intended to apply only when Lighthill's technique <Zs
applicable.l)

It appears that the most simple and direct way of applying Lighthill's
technique is to use a Lagrange expansion-perturbation scheme and to specify
the terms according to Lighthill's principle that higher order solutions shall
be no more singular than the first. The procedure has been given in refer-
ence 13 for one independent variable. For extension of this approach to prob-
lems where more than one independent variable must be strained simultaneously,
a higher dimensional Lagrange expansion is needed. Several forms of the gen-
eralization have been given in references 14, 15, and 16. Those necessarily
involved derivations provide the general term and convergence criteria. Two
independent derivations of simple procedures for obtaining explicitly the
terms to any desired order of the N-dimensional Lagrange expansion in simplest
form are given in chapter V of reference 17. The needed perturbation expan-
sions based on Lagrange's expansion also have been given by Sack (ref. 18) in
rather complicated form, in terms of multiple summations of a general term. A
simple derivation of the needed terms to any desired order is given in
reference 17 in a form most conveniently used for present purposes.

Accordingly, the purposes of this paper are to outline a relatively
simple and direct procedure for obtaining, to any order, the terms of a higher
dimensional (vector) generalization of Lagrange's expansion; to give, in
simplest form, a general perturbation-expansion scheme based on that generali-
zation; to combine the expansion scheme with Lighthill's uniformization tech-
nique for a considerable simplification of its use for any number of
independent variables; and to illustrate the simplified application of
Lighthill's technique in uniformizing the approximate solutions of partial
differential equations.

The special advantages of this approach to applying Lighthill'’s technique
are: (a) By providing explicit formulas for the uniformized solution in terms
of the original functions that were not uniformly valid, it eliminates much of
the tedious procedure normally followed; and (b) it extends this simplifica-
tion to higher dimensions, when more than one variable must be strained simul-
taneously. For one independent variable, results of a previous paper (ref. 13)
are extended to give a more general, and hence more flexible, expression of

lcomstock (ref. 12), in studying a problem posed by C. C. Lin, showed
certain limitations to Lighthill's technique in ordinary differential equa-
tions that presumably can apply as well to partial differential equations.
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the explicit formulas for the uniformized solution. Because of this
generalization, natural choices of constants in the uniformizing transforma-
tion are often evident, and can lead more readily to the appropriate uniformi-
zation. As a result of these factors it is believed that Lighthill's
technique is made easier to apply, and more useful than previously, by the
developments to follow.

Helpful comments by Profs. M. J. Lighthill and R. A. Sack are gratefully
acknowledged.

VECTOR GENERALIZATION OF LAGRANGE'S EXPANSION

Lagrange's Expansion in One Variable

The standard form of Lagrange's expansion for one implicitly defined
independent variable,

Z=LZ(g,e) = ¢ + eu(2) (1a)
is
en g™ [n df ()
£ = £ + ) o S e S5 (1b)
n=1
Vector and Tensor Definitions and Notation

For the treatment in higher dimensions, consider the N-dimensional space

with orthogonal unit base vectors ey (k =1, 2, . . ., N):

ey - €5 = 5ij =1 for i =7

i,j=1,2, .. ., N) (2)

0 for i # j

Let ¢, Z, and the function w#(Z) be N-dimensional vectors in this space such
that

Z=Z(§,e) =¢ + en(Z) (3)
where
N
§ = 20 etk (4a)
k=1
. N
zZ - kZ exZi (C1sTps « - -» LysE) (4b)
=1 h



N
u(Z) = kZ e (Z1, Zo, .+ ., Zy) (4c)
=1

For any arbitrary differentiable function F( ,e), define the vector
operators Vi and Vy:

N

VEF G e) EZ:ek'a—g—FGﬁ) (52)
k=1 k :
N

V,F(Z,e) = E ey -ag_k F(Z,e) (5b)
k=1

where the partial derivatives are taken holding all other components of the
argument fixed.

For arbitrary N-dimensional vectors

N

N
A = ekAk ) B = E ekBk (6)
k=1 k=1

we use an extension of the notion of an N-dimensional dyadic (second-order
tensor) :

N N
1=1 J=1

to define the nth-order tensors

A® -aaa .. A, 8® -BBB. . . B (8)
n times n times

We might call Aﬁn) and B(n) "polyadics," since the special cases for n = 2,
3, and 4 are known, respectively, as dyadics, triadics, and tetradics (cf.
ref. 19). The following defined scalar products then follow quite naturally
from equation (2):

N
A-B= ) A;B; (9a)
i=1



N N
AA:BBz A - (A-BB) = 3, > AA:B.B

N-Dimensional Lagrange Expansion

(9b)
i=1 j=1 3t
AAA:BBB=A - [A- (A- BBB)]
N N N
= 2 2 2 AjAjAKBKB;B; (9¢)
i=1 j=1 k=1
and, in general, define the nth scalar product:
() g . o S
AT BYY = 3 o0 2 AL Aj, ... Ay By B . Bj, (9d)
11=1 1,=1 ip=1
Particular examples of nth-order tensors to be used are:
L)1 ™ = w@r@) . .. BE)
Y
n times
= . e; ei u;, ) ST (D) (10a)
i1=1 ip=1 in=l nt n
and
N N N
m - : _ o™
Vo EVY, .V, E E E iy -« - Cip o 7
i1=1 i,= 1= 1] n
11 1,=1 ip=1
(10b)

The well-known N-dimensional Taylor expansion for a function £(Z) about

the point § is




N 8f(C1’C23' . .’C}J)
£(Z1,22,. - «»ZN) = £1(Cq585,. - -sOp) + E (Zi - ¢3) T -
1 .
i=1

N__N
1 - 82£(21,Lp50 + +aly)
+ﬁz E (Zi - zi) (25 - ¢3) sta.
. : 17]
i=1 j=1
(11)
In the above-defined notation, with Z defined by (3), the complete
expansion (11) is equivalent to simply
n
(@ - £6) + ) o w @] v ee) (122)
n=1
Then, also,
n
hD) = BE) + E S @)™ mvPe) (120)
n=1

These two equations determine the higher dimensional Lagrange expansion to any
desired order in e, as shown by the following example to order e?:

£2) = £§) + k(D) - VEC) + 3 2 @u@D]VIEE) + 0T (132)

where

wEZy = u@®) + en(?) - VCH(S‘) + 0(e?)

pE) + en@) ¢ VR * 0(D) (13b)

Thus
£(Z) = £§) + () - ch(f) + e2{[nE) - V€)1 - V. £E)

f 2 EEIMEIVTEE)) + 0D (13¢)



To order €3, this standard form of Lagrange's expansion extended to
N-dimensions is?

2

f(Z) = f€) + el - V£ + = {u -9, (0 V) + (0 - Vi) * V£)
z 2! z C C z

e3

+ 3T i - VC[# * VZ;("' ’ ch) + (M V/;”') ‘ ch]
+ 20 V) VR VL) ¢ [ Ve V)

* (M V) V] V£ s 0(e") (14)

where the argument of each function on the right side of equation (14) is ¢,
and where Z is defined implicitly by equation (3). To obtain the form (14)
from the procedure illustrated in equations (13), several identities are
needed. However, this is not essential, as the form (13) and higher orders of
that form, with the definitions (9) and (10), are also readily usable. (An
alternative, completely independent derivation of eq. (14) is given in

ref. 17. The general terms are obtainable from the more complex derivations
and results of ref. 16.)

A PERTURBATION-EXPANSION SCHEME

Any number of additional parameters may be included as arguments of
f, #, and Z. Thus, for example, with only one additional parameter o, if

Z=Z(¢,c,0) 2§ + en(Z,0) (15)

then equations (12) may be replaced by

=]

(2 = 26,0 + ) S WEZa 1™ @y e (162)

n=1

2Note that in equations such as (13c) and (14) an operator does not act
beyond the closing bracket of a pair inside which it is located.



where

CASIERT R Zﬁﬁ 42,0 VLG o) (16b)

n=}

The more explicit form to order e3 - is the same as equation (14) except that
the left side is f(Z,0) and the functions ¢ and f on the right side have
arguments (§,a).

Now suppose that f(Z,0) and #(Z,a) can be expanded in power series in

£Z,0) = L IR @; wZw) = X TR @) (17)
k=1 k=1

If these expressions are substituted into equations (16), or into the
generalization of (14), and if the results are specialized to the case where
o = £, one obtains a useful perturbation-expansion scheme. To order €2, the

results are:

£Z,) = (D) + £, @) + 2£5(2) + () (18a)
and
£(Z,e) = £1() + elf26) + 1 €) - V. £}
v e2{£3@) F #16) ¢V EE) + @) TV EE)
SO EIORR AN ER AN Y
+ (3) ) - Va1 - Va1 -0 (18b)
where
Z=% +en )+ e2{ua@) + 1) - Vcﬂl(f)} + 0(e?) (18¢)

For the special case where ¢, #, and Z have only one component each, z, u,
Z, the results to all orders, derived from (1), are:

£(Z,e) = D, e (2) (192)

n=1



and

n=1
[=-] [+ n o
n ! k-1 k-1
= 5 E e ug(z) E e £ (2) (19b)
n=1 9z k=1 k=1
‘where
o [~ n
n-1
el 3 E : k-1
Z=17+ T T no1 € Uk(C) (19¢)
n=1 ot k=1

As noted in the Introduction, equations (18) and (19) should be
obtainable from the more complicated general forms in reference 18. These
results have been derived here more simply and stated in these forms for con-
venient use later.

COMBINATION OF LAGRANGE EXPANSION METHOD WITH LIGHTHILL'S TECHNIQUE

For a problem in which the terms of the approximate solution in the form
of equation (18a) or (19a) have been found to be not uniformly valid, the
basic principles of Lighthill's uniformization technique are:

(1) To reformulate the expanded solution, transformed in terms of
initially undetermined ''strained coordinates,'" and

(2) To specify the straining transformation in a manner that removes the
nonuniformity, according to Lighthill's principle:

Higher approximations shall be
no more singular than the first.

For an arbitrary straining transformation (arbitrary M:(§) in eq. (18c)),
any transformed expanded solution is given by equation (18b) to order €2,
where equation (18a) is the expanded solution in the "unstrained" coordinates.
Thus, part (1) of Lighthill's technique is done. It remains to specify the
terms so that Lighthill's principle is satisfied.

It is useful to consider first why'the principle achieves uniformization.
The expansion of the exact solution will have successively higher order



nonuniformities in the terms that are of higher order in ¢ if the exact
solution contains € in such a way that its expansion shifts a singularity.
For example, suppose the exact solution contains g = (Z + e)~!. This
expression is singular at Z = -e. When & > 0, the singularity moves to

Z = 0. This is exhibited in the expansion about e = 0:

g=g@Z+¢e)=(@Z+e) P =2z1_¢ez72+e227%F% (20)

In a perturbation solution that would attempt to find g as a function of
Z and e, such singular terms will appear. However, if one made a transforma-

tion
g =2 + ¢ (21)

the complete term representing g is simply

g(g) = ¢t (22)

[tje]
|1}

where

Z=1r-¢ (23)

with which g is uniformly valid at Z = 0. The transformation simply
removed € from an expression (g) that is singular at a value of Z depend-
ing on €. Thus, equation (20) contains e, but equation (22) does not, so
that "solution" for g and Z in terms of ¢, expanded in powers of €, is
uniformly valid at Z = 0. With this observation, for the general problem,
one then simply seeks a transformation that precludes the occurrence of the
higher order nonuniformities (and therefore that eliminates the shifting of
the singularity when the solution is expanded) by removing ¢ from terms
whose expansion would shift the singularity. This is accomplished by
Lighthill's principle. It should be obvious then that Lighthill's technique
should not be expected to remove the nonuniformity in a solution that is
caused by an essential singularity, which is removable only by properly magni-
fying the variables and not by a simple straining. Thus, in an extension of
Lighthill's technique (see ref. 3), Kuo combined a "stretching'" with a strain-
ing of the coordinate in a boundary-layer problem. The nonuniformity caused
by an (exponential) essential singularity occurs in problems where the highest
order derivatives are multiplied by the small parameter, and so are lost in
the perturbation solution (cf. refs. 2 and 8).

In the classes of problems for which Lighthill's technique can be used,
Lighthill's principle can be applied as follows: To first order as € -+ 0,
f(Z,e) = £1(¢) in equation (18b). To satisfy the principle then, one can
simply determine each u_(§) so that the coefficient of each €M in equa-
tion (18b) is equal to some constant ap times f;(§). Thus, specify

£(Z,e) = p(e)f1(§) (24a)

10



where

ple) =1 + Z a,nen (24b)

n=1

The constants ap; are chosen for convenience in each problem. They might all
be taken to be zero, but it is just as easy to leave them unspecified a priori
for possibly greater convenience. Thus, from equations (18b) and (24), one
may evaluate the u,(§) to satisfy:

£26) + 11 () - VA1) = a1f1 () (25a)

£56) + B16) - V56 + 16) - VEE) + (3) 116 - v, I0E) - V)]

* (%) [1G) - V€] - VEIE) = af1 () (25b)

etc.

For the reduction of equations (25) and (18), the following notation is
convenient. Let the component of M({,e) in the direction of z; be
u; (Z1,%5, . - .,CN,€), which has the expansion

Ui(C1’~ . -:CN:g) = Uil(cl,- . -:EN) + EUiz(Cl,- . -,CN) ... (26)

Thus, in Uijs subscript i indicates the component direction and subscript j
indicates the order of approximation. One result is

N
_ § : 3
Hj(f) : V% = Uij(Clx- . "EN) 52;‘ (27)

i=1

for use in equations (25) and (18). In the special cases where only one
component of the independent variable (say, Z;) need be strained, denote:

Uij =0 for i # 1
(28a)
= Uj(Cl,' . ',cN) for i =1
If F'() is then defined as
Frg) = 226 (28b)

]

=

11



we find, from equations (19b) and (24), the special case of equation (25) when
equation (28a) applies:

-1
U = (-f-r) (f2 - a1fy) (28¢)
1
1 2
My = <—f%> [ - axfy + nf, + (5) (“1fi)'] (28d)
1
1 2 1 "
H3 = <.f—]'-> [fu - agfy + wify + u,f) ¢ (?) (uif, + 2upupf])" + (E) (7£}) ]
1
(28e)
1 ! ' '
My = <_> [fs s anfr g dy, vy v usf,
1
(7) (u?f; + 2u1u2fé + 2u1u3f£ + Ugfi)'
1
(%) (uify + 3u uzfl)" (3;{) (u?f{)"'] (28£)
etc. In this special case, equation (18c) becomes (cf. eq. (19¢c)):
(o] [oe] n
n-j
n j k-
Zy =g, + E ,%T- — E € luk(cl,. e eaty) (28g)
n=1 9%y k=1

The use of these equations for direct application of Lighthill's
technique is illustrated below. With a nonuniform result in the form of equa-
tion (18a) if more than one independent variable is to be strained, equa-
tions (24), (25), (27), and (18c) are used; if only one coordinate is to be
strained, equations (24) and (28) are convenient.

APPLICATIONS IN IDEAL FLOW OVER A THIN BODY (ELLIPTIC EQUATION)

The problem of flow over a thin airfoil of elliptical cross section is
used for illustration here because it has been discussed extensively in the
past in regard to the use of, and the previously presumed limitations of,
Lighthill's technique. Also, the exact solution is available in a simple form
for comparison of the results,

The elliptical-airfoil surface is represented by
= yp(x) = ze(1 - x)V2, (-1 <x21) (29)

12



where x and y are inertial Cartesian coordinates, made dimensionless with
respect to the length of the semimajor axis of the elliptical body. The flow
is assumed to be steady, inviscid, and incompressible. The flow velocity is
assumed to be tangent to the body surface and, far from the body, to approach
a uniform stream velocity with magnitude U and direction parallel to y = 0.

Consider the complex potential F(Z) and complex velocity W(Z), which

are analytic functions of the complex variable Z = x + iy:
F(Z)
F'(2)

o (x,y) + ip(x,y) (30a)
W(Z) = u(x,y) - iv(x,y) ,

L

(30b)

x - 1¢y = by + 1dx

where subscripts x and y indicate partial derivatives. The velocity poten-
tial ¢ and the stream function ¥ then satisfy the elliptic equations
representing conservation of mass and momentum:

¢xx + d)yy = 0

o ~ Ux + o(l) as x%2 +y2 > o % (31a)
v _ ¢ d)’b(x)
poh O

and

Yxx * Vyy = 0

p ~ Uy + o(1) as x% + y? o> (31b)
' ¥x  dyp(x)
% = - 'Ii = T b} or Yy = Os on y = Yb(x)

Consider the solution in three forms: F(Z), of which ¢ and ¢ are the

real and imaginary parts; W(Z), of which u and -v are the real and imaginary
parts; and

Q) = [(u2 + v3)1/2] ey (0 (32)
b

the velocity magnitude on the body surface. Define the dimensionless

perturbation-solution functions f£(Z;e), w(Z;e), and qb(x;e) and the function
g(x;e) by:

13



F(Z;e) = U[Z + ef(Z;€)] (33a)

W(Z;e) = U[1 + ew(Z;¢e)] (33b)

Qp (x38) = U[1 + eqp(x;e)] (33c)
= U1 + e + e2g(x;¢e)] (33d)

A number of textbooks give the procedure for finding the approximate thin-
airfoil solutions of equations (31). With Yp(x) given by equation (29), one
finds

£(Z;e) = £1(2) + efy(2) + e2£3(2) +
w(zze) = £1(Z;e) = £,(2) + ef,(2) + e2£,(2) + (34)
glx;e) = g, (x) + eg,(x) + e?g (x) +
where
£1(2) =2 - (22 - N2 £2(2) = £1(2) ;
£ = 512 - (3) @ - DV2Z 5 £,@) = £32) (35)
£5(2) = £5(2) + (%) (z2 - 1)73/2 5  etc.
(cf. p. 72 of ref. 4) and
8,00 = - ()20 -7 g =g ;|
g = (2) 0 -2 g =g (36)
gs(x) = - (%%) x6(1 - x2)°3 etc. J

(cf. p. 52 of ref. 4).

For later comparison, note that the exact solutions (which can be found,
e.g., from ref. 20, p. 429) are:

£(Z3e) = (1 - )71z - (22 - 1 + )17 (37a)

14



(1 - e) M[1-2(22 -1+ ¢2)-1/2] (37b)

5 172
1+ ¢ 1 - x

X3e) = -1 (37c
B(x;e) e? [(1 - x% + szz) ] .

We see that the approximate solutions (34), with (35) and (36), are
singular at Z = 1, the leading and trailing edges, and the higher approxima-
tions are successively more singular at Z = 1. We therefore consider use of
Lighthill's technique by the direct procedure given above. To show the
generality of the method, it is applied in the following paragraphs to this
problem in a variety of ways.

w(Z;e)

First Solution
If Lighthill's technique in the form of equations (24) and (28), with the

single independent variable Z, is applied to the complex potential F having
the nonuniform solution given by (33a) with (34) and (35),

(%) (g._ ) = £(Z;e) = p(e)[c - (2 - DY/2] (38)

If we now arbitrarily take all a = 0 in equation (24b), so that p(e) =1,
equations (28c) to (28g) give the solution directly as

£(Z;e) = ¢ - (g2 - 1)1/2

(39a)
Z

g+ e(g? - 12

It is easily verified that this solution with only two terms in the expansion
of Z is, in fact, equivalent to the exact solution (37a). Equations (39a)
further reduce to

=] Loy
]

(1 + e)¢
(39b)

N
1}

which has also been given by C. Jacob (see ref. 10). To find the expression
for the corresponding velocity, one simply replaces £(Z;e) by w = £'(Z;¢€)
and each f£,(z) by fﬂ(c) in equations (19). The result for w in (33b) is

15



w=1-¢2(%2-1"Y2+e[l-g?-1)"Y2 - (22 -1)71]

+e2[1 - ¢c(z® - D72 - (22 - 7]+ 0(e?) (40)

Note that there is no straining at Z = #1, so the corresponding velocity
would not be made uniformly valid by this straining transformation. Thus,
even though this particular straining transformation (fixed by taking

p(e) = 1) is successful in uniformizing the complex potential, it is not
useful for the velocity.

Second Solution

If, instead of arbitrarily taking all a, = 0, one observes from
equations (35) and (28c) through (28f) that it appears most natural to choose
ap = 1 for all n (since it substantially reduces eqs. (28) for this problem),
so that p(e) = (1 - e)'l, one obtains directly from equations (24) and (28):
(1-e) e - (22 - 1)12]

e? 2 1421-1
C-(T)[c— (ze - 1)*'°]

f(Z;¢e)

1)

(41)
Z

It is easily verified that this solution, with only two nonvanishing terms in
the expansion of Z, is also equivalent to the exact solution (37a). Further-
more, there is a finite straining at Z = x1. The corresponding velocity
field, which then remains uniformly valid including the points Z = %1, is
given by (33b), with

w(Zze) = 1 - g(c? - D72 x e[l - g(c? - 1)7Y2]

* E2[1 S g2 - 1)-1/2 (%_) (2 - 1)—1]
+ 63[1 - (g2 - 172 - (%) (z? - 1)'1] + 0(e™) (42)

Third Solution

If the velocity field is of prime interest, one might instead apply the
uniformization directly to the complex velocity, W. The nonuniform solution
is given by (33b) with (34), in terms of the derivatives of the functions
listed in (35). The uniformly valid solution can be represented by (24) and
(28) with all f,(z) replaced by wn(z) = fﬁ(c). Thus

(%)(%’-- ) = w(Z;e) = p(e)f, () (43)
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where p(e) is given by (24b) and where the corresponding expansion of Z is
given by (28g). It appears most natural in this problem (in using (28c)
through (28f) with all fpn(z) replaced by w,(z)) to set ap =1 for all n,
as this substantially reduces the results. One then obtains directly

w(Z;¢e)

1 -e) M1 - (2 - 172 (44a)

z - (%—) eg - (-;—) €% - . . . (44b)

It is easily shown, in fact, that the exact solution (37b) is equivalent to
(44a) with Z = ¢(1 - €2)!1/2, the expansion of which is (44b).

~N
L}

Fourth Solution

If one is interested in only the surface speed, Q, (or the surface
pressure coefficient, C, = 1 - (Qb/U)z) as a function of x, one can use the
above procedure directly to make @, umiformly valid. The nonuniform solu-
tion is given by (33d) with (34) and (36). The uniformized solution can then
be found from equations (24) and (28) with Z and ¢z replaced, respectively,
by x and ¢, and with £, f,,, and their derivatives replaced by g, g,, and
their derivatives. Thus

(;1'2') [%E - @+ 6)] = glx;e) = p(elg, (&) (45)

where p(e) is given by (24b) and where the corresponding expansion for X as
a function ¢ and € is found from the form of (28g). In using (28c) through
(28f) one observes that it is convenient to let aj; = 1 and ap = 0 for

n > 2. One then obtains directly

g(x;e) = (1 + ) ('2—1) g2 - g7 (46a)

2 5 _ 7
X =g+ e? (3%) et - g2yt BELZTEL  o(ch) (46b)

Not every possible choice of the straining transformation is useful in
achieving the uniformization. The constants a, must be chosen to give
useful results.

Remarks on Elliptic Problems

Because of the variety of ways the technique has been used (i.e., variety
of straining transformations) in a straightforward manner in the perturbation
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solution for potential flow over a thin elliptical airfoil, it appears that
the technique should be applicable to a broad class of elliptic problems.
Other simple examples of elliptic problems that have been worked out by the
writer using the perturbation technique include potential flow over a thin
parabolic cylinder, a thin round-nosed semi-infinite slab, a thin Rankine oval
cylinder, and a slender axisymmetric paraboloid. Of course, it should not be
implied that the procedure can apply directly to all elliptic perturbation
problems. It cannot. The limitations of the method in elliptic problems are
not definitely known, but are found to be apparently not so severe as believed

previously.

ILLUSTRATIVE APPLICATION TO A HYPERBOLIC EQUATION

For illustration of the procedure when more than one independent variable
must be strained to achieve a uniformly valid approximation, consider the

problem:
2
fxx - fyy + (‘x§7—6> (ix - xfy) =0, (>0 (47a)

y =1, all x: f=1 (47b)

af _ € - x
53;— P (47(:)

This problem is chosen for illustration because it is especially simple,
and it combines several features that may be encountered in more complicated
problems. Also, the approximate solution can be compared with the exact solu-
tion. The partial differential equation (47a) is hyperbolic. Even though
this particular problem could be simplified before solving it and the complete
solution found, let us proceed to apply the perturbation technique directly, 3
as one would need to do in more complicated problems.

First, the perturbation solution is sought in the form:
£(x,y,€) = f1(x,y) + efa(x,y) + e*f3(x,y) + . . . (48)

In the limit as e - 0, one obtains the problem for f;, which can be written
in the form

32

52
5z i) - 7 (xy£1) = 0 (49a)
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y=1: £ =1, —+=-_1 (49b)
The wave equation, (49a), with conditions (49b), has the solution
fi(x,y) = y~! (50a)

Similarly, the problem for £, is found to be:

32 92 2
5x2 (xyf2) - EB;{ (xyfs) = ;:;
y=1: f£2 =0, %g% = %
which has the solution
£(x,y) = x1(1 - y72) (50b)
Further, one finds
f3(x,y) = -x"%y71(1Q - y7?) (50¢)

The perturbation solution (48) with (50) is singular on both lines x = 0
and y = 0, which are within the domain of interest. We therefore consider use
of Lighthill's technique according to the simplified approach outlined on
pages 10 and 11, 1In particular, if the solution near the origin is of
interest, both coordinates must be strained simultaneously.

To apply this simplified procedure, let N = 2 in equations (4a) and
(4b) and let

Zy = X, Zy, =y (51)

Then the expansion (48) corresponds to (18a). The coordinate transformation
(18c) implies (18b). To achieve the desired uniformization, equations (18)
are also equivalent to (24a) with (24b) and with the functions u, determined
by (25). Thus J

£(x,y,e) = (1 + aje + ae? + . . .) <£;> (52)
2
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where

X 221 =C) * enp * €2 (?12 * My %%il * My, i;i}) + 0(e?) (53a)
Yy S Zy =T, * euy; + e” (“22 My %E%% * Moy %;if) + 0(e3) (53b)
and where
f2 + uy; ;gl + Uy gél = ayfy (54a)
1 2
and

3£, of, of; 5£,

RS ac, © M2173g, )T \M2 Ty T P22 T,
I A . 4, 0
2 \"11 3z, T oMer B, J\M1 B, T M2l a,

1 Uy 9H11) °f) 1 My upy ) 3f; _
3 (“11 z; M2l Bz, 3‘5‘1“‘7 Mgt Y2l o) ag, C apf;  (54b)

(the arguments of each fj and Hij are Cy1585)-

Equation (54a) gives an equation for wu,; in which there is no apparent
advantage in having a; mnot zero; so for the simplest treatment, take

a) = 0 (55)

The result for use in (53b) is

4
u21(21,22) = —2*2:——* (56)

If the determined functions (f;,f;, and u,;) are then put into (54b), and if

a, =0 (57)
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for simplest treatment, the result for equation (53b) to order €2 is

2 2
_ gy - 1 o (82 - H11\f%2 - 1 3
y = CZ + € < ;1 > + € < C]. C]_ + 0(6 ) (58)

The function wu;;(Z;y,Z,) is as yet undetermined, but it can be conveniently
specified from the following observation. We see that the expansion (58) for
y = Z, 1is singular at ¢; = 0 and that higher order terms in (58) would be
more singular at 7, = 0 if x = Z; were not strained appropriately. If we
took u;; = 0, then Z; would be the same as z; to order e, and the higher
order singularity at g; = 0 in equation (58) would not be acceptable. We
therefore invoke Lighthill's principle in a second sense in this problem, and
specify u;; to make higher order terms in equation (58) no more singular
than (c% - 1)/zy at gy = 0. Thus, we may let

Gy = My

z = o = constant in equation (58)
1

or

u]_]_(gl,gz) = Cz - OLCl (59)

and obtain the uniformized second-order solution:

f(X,Y,E) = T (603—)
L2
x =gy * (g, - ag;) + 0(e?) (60b)
2.
Y=, % <C—2c——> + 0(e?) (60¢)
1

For the solution to be real very near the origin o must be less than zero;
so we take

o =0a) = -1 (61)

Equations (60b) and (60c) are easily combined to obtain ¢, as a function of
X, ¥, and €, so the uniform second-order solution for f 1is obtained directly
as

3The appropriate algebraic sign on the radical in equation (62) or in
(65) must be chosen, but this detail is considered incidental to the illustra-
tion, as it is not of concern in equations (60) or (63). For both x > 0 and
y > 0, the + sign is used.
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-1
f(x,y,e) = {x LY s 212 [(X + ey)? + 4e?(xy + € + 62)]1/2 } (62)

-2¢?

If the above procedure is continued to order €2 (leaving o as an
arbitrary constant in equation (59)), the uniformized third-order solution is

obtained:

f(x,y,e) = L (63a)
C2
x =17 +¢e(g, - ar;) + e2a?z; + 0(e?) (63b)
2 2
zs - 1 -1
y =12, +e|2—)+ e 227 2}y o(ed) (63c)
&) 3]

To this order, for the solution to be real very near the origin, o must be
greater than zero; so we take

a=ap =1 (64)

Equations (63b) and (63c) are easily combined to obtain t,, so that the
uniform third-order solution is expressed explicitly as

/2)-1
~ | Xt EY 1 2 iy 4 ]1
f~ + X+ € + det(xy + € + € 65
{ it o [+ e (xy ) (65)

For comparison, it is easily verified that the exact solution of the
problem (47) is

£0y,0) = v (66)

and that the approximate solutions (60) or (62), and (63) or (65), approach
(66) uniformly as e » 0 for all |x| and |y| < .

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., August 12, 1970

“The appropriate algebraic sign on the radical in (62) or in (65) must be
chosen, but this detail is considered incidental to the illustration, as it is
not of concern in equations (60) or (63). For both x > 0 and y > 0, the +
sign is used.
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